Pauline EMERY – Building an automated algorithm for quantum chemical predictions of hydrogen bond binding energies
Professor: Jeremy Samuel Arey
Environmental Chemistry Modeling Laboratory – LMCE
Description
At the molecular scale, a delicate interplay of intermolecular forces and selforganization controls the sorption and transport of organic pollutants in complex materials such as natural waters or biological phases. As a result, different pollutants associate very selectively with different environmental phases, having pivotal consequences for their ecological impact and eventual fate. Computational models describing the energetic landscape of pollutant interactions with these environmental solvents and sorbents are currently a critical scientific need.
The goal of this project is to build an automated algorithm for quantum chemical predictions of hydrogen bond binding energies. This algorithm will test a quantum chemical model recently developed within the LMCE research group, to predict the free energies of hydrogen bonding interaction between organic pollutants and complex environmental materials. The results will be incorporated into a larger modeling framework designed for widely general predictions of organic pollutant solvation energies in environmental phases.
Eulalie SAUTHIER – The Impact of Surface Temperature on the Dynamics of Diurnal Mountain Winds over Steep Slopes
Responsible: Daniel Nadeau
Laboratoire de mécanique des fluides de l’environnement – EFLUM
Abstract:
Hainan HU – Systematic Exploration of SelfAssembling Robotic Systems using Webots
Professor: Alcherio Martinoli
Assistant: Grégory Mermod
Laboratoire de systèmes et algorithmes intelligents distribués – DISAL
Abstract
Selfassembly is the autonomous organization of components into patterns or structures without human intervention. Selfassembling processes are common throughout nature and technology. They involve components from the molecular (crystals) to the planetary (weather systems) scale and many different kinds of interactions. The concept of selfassembly is used increasingly in many disciplines, with a different flavor and emphasis in each.
We are currently looking for innovative methods for modeling the influid selfassembly of micro scale components into complex, hybrid MEMS devices. The challenge posed by this task is twofold: (1) one needs to account for the spatiality of the process (i.e., the position and the orientation of the building blocks with respect to each other and the geometrical features of the environment), and (2) selfassembly processes are intrinsically distributed and multiscale, i.e., the involve a large variety of time and lengthscales, which need to be captured by the models.
Aggregation property without rules
This project use existing building block model and environment model, modify the prototype of the building blocks, explored the position and the orientation of the building blocks with respect to each other and the geometrical features of the environment, the principles of the local grammars.
Since we have known the basic features of the selfaggregate, we can explore more and deeper by designing the aggregation. In this project, we design two algorithms: symmetric algorithm and generic algorithm, which use local grammar to achieve square aggregation. The yield of these two algorithm are 97.3%, 89.8% at least one square and 49.9%, 22.9% with two squares. From the result we can see that the high scalability is base on the sacrifice the yield. We also introduce a randomly check of the connectors method to see whether it will have a higher yield, but it doesn’t work for many reasons.
The advantage of global grammars is discussed in the situation that the aggregation shape is NineSquare. The global grammar is just a supervisor which can collect the data that is hard for the building blocks to get with local grammars, and then use the data to set a sequence of rules to solve the troubles during the aggregation.
Aggregation into a square
Rui WANG – Implementation of Heat Transfer Model in a HighPerformance FiniteElement Library
Professor: JeanFrançois Molinari
Project leader: Srinivasa Babu Ramisetti, Nicolas Richart, Guillaume Anciaux
Computational solid mechanics laboratory – LSMS
The objectives of this project are twofold. First, a generic (continuum) heat transfer model based on Fourier’s Law will be implemented within an object oriented finite element open source framework called AKANTU developed at the Computational Solid Mechanics Laboratory (LSMS). The implemented model will be useful to study both steady state and transient heat transfer problems. This work has to be validated by simulating various example problems such as thermal transfer in 3D cube. Second, I have reviewed current approaches for coupling a continuum description of heat transfer to an atomistic (Molecular Dynamics) description.
Some of the numerical results are shown below:
Vincent ZIMMERN – Stochastic Simulations of the MAPK Cascade
Professor: Vassily Hatzimanikatis
Laboratory of Computational Systems Biotechnology – LCSB
Abstract
Figure 1: Stochastic Simulations of the MAPK cascade over 1000 s.
With the goal of achieving superior insight into the functioning of cellular signals, the systems biology community has been gradually increasing the realism and precision of its numerical simulations of cellular processes. After an initial period that saw the rise of continuous methods of approximation using systems of diﬀerential equations, the saga took an interesting turn when it was noticed that the continuity assumption underlying this dominant approach was far from being biologically valid. On the contrary, trace amounts of a single large biomolecule could have untold eﬀects on larger signaling networks. As a result of this realization, the attention of the community gradually shifted towards stochastic methods that would take the inherent variability of these systems into account.
This project, following on the work of a master’s thesis completed in 2010 by Alen Brusjnak, attempts to simulate the tricyclic MAPK cascade, one of the most wellresearched signaling cascades of the mammalian cell, using fullystochastic methods. The results are analyzed in terms of the system’s ultrasensitivity. Much work remains to be done on this topic, but the paper concludes with some early ﬁndings that seem to conﬁrm the inherent complexity of these signaling mechanisms. Below are some of the graphical results from the study.



Figure 2: Results of stochastic simulations of the tricyclic MAPK cascade, 1000s.,
for diﬀerent values of MichaelisMenten constants
Mahmoud JAFARGHOLI – A lumped parameter model for the terminals of the cardivascular system
Supervisors: Dr. Simone Deparis, Adelmo Cristiano Malossi
CMCS – Chair of Modelling and Scientific Computing
Abstract:
Cardiovascular diseases motivate the research community to model and simulate the entire human vascular system. However, a detailed description of all the components in the network is unfeasible due to computational limitations. The geometrical multiscale approach is a strategy that can be used to overcome this problem. In a geometrical multiscale framework threedimensional models are used to model speciﬁc components where a detailed description of the ﬂow ﬁeld is required. The remaining arterial vessels are usually accounted through onedimensional models. Finally, the problem is closed by zerodimensional lumped parameter models, which accounts for the peripheral circulation.
In this project, we develop a zerodimensional windkessel model in the LifeV library (http:// www.lifev.org), to be used as a terminal for the cardiovascular circulation. This model has an equivalent electrical representation in which volumetric blood ﬂow rate, Q, is equivalent to electric current ﬂow and pressure, P, is equivalent to electric voltage. The ﬁgure below shows the equivalent electrical representation for the windkessel model.
Fig. 1. windkessel model electrical circuit
Janusz Michalik – CFD best practices for hydrodynamic analysis of high speed low displacement hulls
Supervisor: Dr. Mark Sawley
Responsible: Dr. Simon Watin, VPLP Yacht Design, Vannes, France
Janusz Michalik – Hydrodynamic stability of hydrofoils: Development and validation of a flutter equation solver
Supervisor: Dr. Joël Cugnoni
Laboratory of Applied Mechanics and Reliability Analysis – LMFA